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1. Introduction.

The allocation of a specific weapon system type to an acquire target is
dn important tactical decision in the fire-support process.+ Accordingly, the
determination of optimal (or even good) fire-distribution strategies for support-
ing weapon systems+f is a major problem of militarvy operations research. The
problem is of interest to the military tactician so that he may have a clearer
understanding of the circumstances urder which a supporting weapon system (such
as artillery) should engage the enemy's primary weapon system (i.e. infantry)
and when it should engage the enemy's supporting weapon systems.

{n this paper we will examine the dependence of optimal time-sequential
fire-support strategies on the form of the combat attrition modei. Previous
work by Weiss [38] and Kawara [22] suggests that an optimal fire-support strategy
consists in always conccntrating all fire on one enemy varget type (although
this target type may change over tiue). We will consider a differential game
with slightly different combat dynamics than the fire~support differential game
recently considered by Kawara [22] and show that optimal fire~support strate-
gles quite different in structure than those obtained by him may arise. More-
over, the solution to the problem which we consider in this paper involves a
solution phenomenon not previously znzountered in a Lanchester-type differential
game:*** the dual {or adjeint) variables may be discontinuous across a manifold
of discontinuity for both players' strategies.

Fire-support operations (as are any combat operations) are a complex

random process (see [26]). We will nevertheless consider a simplified deterministic

fSee pp. I-33 to 1-43 o1 [26] for a further discussion.

HSee [38] for a brief discussion of the distinction between a "primary" weapon

system (or infantry) and a "supporting" weapon systen.

fffWe refer to a differential game as being a Lanchester~type differentiar game
when the system dynamics ave describel by Lanchester-type cquations of warfare
(sce [34)). |
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Lanchester-type model in order to develop insights into the structure of ontimnl
time-sequential fire-support strategies. H. K. Weiss [38] has emphasized that
such a model of an idealized combat situation is particularly valuable when it
leads to a clearer understanding of significant relationships which would tend
to be obscured in a more complex model. *
The problem of determining an appropriate mixture of tactical and strategic
forces (another aspect of the optimal fire-support strategy problem) was exten-
sively debated by experts during World War II. Some analysis details may be
found in the classic book by Morse and Kimball (see pp. 73-77 of [27]). The
problem was studied at RAND in the late 1940's and early 1950's (see [16]) and
elsewvhere (see [1]). It would probably not be too far-fetched to claim that
this problem stimulated early research on both dynamic programming (see [2]) and
also differential games (sece [16], [20]). Today the problem of determining
optimal air-war strategies is being excensively studied by a number of organiza-
tions (rce, for example, [17], [25], [29], [36]). An idealized version of A. Mengel's
problem (see [16]) appears in Isaacs' book as the '"War of Attrition and Attack"
(see pp. 96~105 of {21]). Discrete-time versions of this problem of determining
optimal "air-war" strategics have been considered by a number of workers as
time-sequential combat game: [5], [6], [15] (see also [7], [13]). A related
problem has been considered by Weiss [33] (see also [37]), who studied the optimal
selection of targets for cngagement by a supporting weapon system.+ More recently,
Kawara [22] has studied optimal time-sequential strategies for supportin, weapon
systems in an attack scenario versioan of Weiss' problem. Other recent work has
considered various conceptual and computational aspects of time-sequential

combat sames [28], (29}, [30}.

JrSee {33], however, tor a justiiication ot thr optinalitly v strategies given
by Weiss [38]. A generol soluticn algorithm is also pre-ented in this paper
{33]).
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Since our work here may be considered to be an elaborarisn upon and
extension of Kawara's fire-support differential game {22], we will review
his main results and relate our work here to them. Kawara [22] considers com-
bat between two heterogeneous forces, each composed of infantry (the primary
weapon system) and artillery (the suppor:ing weapon :ystem). The time-sequential
decision problem is to determine each side's optimai strategy for distributing
its supporting weapon system's fire over enemy target types according to the
criterion of the infantry force ratio at the prescribed-duration attack's end.
Kawara concludes that each side's optimalf strategy is to always concentrate all
supporting fire on the enemy's supporting weapon system (counter-battery fire)
during the eariy stages of battle (if the total prescribed length of battle is
long enough) and then later to switch to concentration of all fire on the enemy's
infantry. He states that this switching time "does not depend on the current
strength of either side but only on the effectivenesses of both sides' supporting
units" (see p. 951 of [22]). Moreover, an optimal strategy has the property of
always requiring concentration of all supporting fire on enemy infantry during
the final stages of battle.

Thus, Kawara concludes that for his model the optimal fire-support
strategies do not depend on force levels. However, this is only true provided
that the appropriate side's (in Kawara's numerical example, the defender)
supporting weapon system is not reduced to a zero force level before a critical

time.*f Let us assume, therefore, that neither side's supporting weapon system

+Kawara does not determine the optimality of extremal strategies determined for
his problem (i.e. show that sufficient conditions of optimality are satisfied
(see [4])). Ve use the work extremal to denocte a traje~tory on which the
necessary conditions are satisfied.

**See the expression for T; on p. Y49 of {22] and its plot in Figure &4 of
[22].
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{ can be reduced to a zero force 1eve1.+ For this condition the optimal fire-

g i support strategies are force-level independent and may be expressed solely in

; terms of "tine-to-go" in the prescribed duration battle. The purpose of this

?; paper is to show that a tactically realistic variation in the attrition equations
.ﬁ leads to a problem with force-level dependent optimal fire-support strategies.

3 This result has an important implication for tactical decision making: optiwal

?4 time-sequential allocation of fire-support resources depends on not only initial

i intelligence estimates but also on a continuous monitoring of the evolution of

E the course of combat.

% Thus, the purpose of this paper is to illustrate the dependence of optimal
E fire-support strategies on the nature of Lanchester-type combat attrition equa-

. tions (see [3+]). We consider a slight variation in Kawara's problem (i.e.

’?’ different combat dynamics) for which the structure of the optimal strategy of

% one of the combatants is significantly different than that in the original prob-
%\ lem [22]: the optimal strategy of one combatant depends directly upon the enemy's
: force levels and is no longer to always concentrate all fire on either the enemy's

primary or supporting weapon system. Furthermore, w2 will show that an optimal
; strategy in which a side divides the fire of its supporting weapon system between
the enemy's primary (infantry) and supporting systems can only occur when the
enemy's infantry has some fire effectiveness (in the sense of a non-zero Lan-
chester attrition-rate coefficient) against his infantry. The optimal strategy

of one side to sometimes split its fire is very similar to that which occurs in

a one-sided (optimal control) problem previously considered by us [31, (see also

[32]) for the optimal distribution of fire by a homogeneous force in combat

against homogeneous forces. In [31] the enemy ccnsisted of two weapon system

fInitial force levels and the known length of battle may be sufficient to

guarantee this for a given set (or range of values of) Lanchester attrition-
rate coefficients.

O




types, each of which undergoes attrition at a rate proportional to the product
" of the numbers of firers and targets (referred to, for convenience, as "linear-
law" attrition). 7'n fact, this previous work of ours [31) was the motivation

for our examination here of cther attrition structures in Kawara's problem.

2. Kawara's Fire-Support Differential Game.

Since Kawara's fire-support differeatial game is the point of departure
for this paper, we will review the development of his model. The reader will
find it convenient to compare the mathematical statement of Kawara's problem
(1) with the fire-support differential game studied in this paper (2, in order
to understand the dependence of optimal fire-support strategies on the mathe-
matical form of the attrition equations.

Kawara [22] considers the attack of heterogencous X forces against the
static defense of heterogemeous Y forces, Both the X and Y forces are
composed of two types of units: primary units (or infantry) and fire support
units (or artillery). The X infantry (denoted as Xl) launches an attack

against the Y infantry (denoted as Y,). We consider that phase of the attack

which may be called the "approach to contact." This is the time from the initia-

tion of the advance of the X1 forces towards the Y] defensive position until
the Xl forces actually make contact with the enemy infantry. It is assumed
that this time is fixed and known to both sides and that infantry fire has

negligible eftectiveness against the enemy's infantry during this time. During

this time the fire support units remain stationary, and each unit has the capa-

bility to deliver either "point-fire" counterbattery fire against enemy artillery

or "area fire" against the enemy's infantry.
It is the objective of each side to attain the most favorable infuntry

force ratio1 possible at the end of the "approach to contact" at which time the

t

See [35) for some insipghts into the dynamics of combat from considering the
force ratio.




force separation between the opposing infantries is zero and artillery fires
must be 1if_ :d from the enemy's infantry in order not to also kill friendly
forces. Thus, the decision problem facing each commander is to determine tihe
“best" distribtution of artillery fire over time between enemy infantry and enemy

artil’ery in order to maximize the quotient of friendly infantry (numerical)

strength divided by enemy infantry strength at the end of the approach to con-
| tact. This situation is shown diagrammatically in Figure 1. The reader is
referred to Kawara's paper {22] for further details of the model's development,
It should be pointed out that this model also applies to the case of an amphib-
ious landing and the determination of the optimal time-sequential allocation of
the supporting fires of Naval ship guns.

Mathematically, the problem may be stated as the following.*

xl(tf)

maximize minimize{-——(g—y} ’
) v Yitte

with stopping rule: t.-T = 0,

‘ subject to: — = -va,X.V¥.,, (1)
(battle dynamics) dt 17172

qt - ~(IVayy,,

dy

it g -ub.y.x
dt 1717°2°
i’
dt

= —(l—u)bzxz,

with initial conditions

o _ o -
:i(t—O) = x4 and yi(t~0) =¥y for 1 =1,2,

1IWe use capital letters to denote the closed-loop (or feedback) strategies (see
[19]) of the players aund the corresponding lower case letters to denote the
corresponding stratepre voriables (see l4]). A atratepic variable is the
realization (or outcome) <f a strategy. Thus, u(t) = U(t’ﬁnX) and v(t) =

V(tylvx‘) .
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and

l X)3Xy5¥) Y, 2 0 (State Varia®™™@aIncquality Constraints),

0 <u,y £1 (Strategic Variable Inejuality Constra.nts),
where
xl(t) is the number of X infantry (1.e. xl) at time t,
xz(t) is tne number of X artillery (i.e. XZ) at time ¢,
similarly for yl(t) and yz(t).

a is a constant (Lanchester) attrition-rate coefficient+

o

(reflecting the effectiveness ot YZ fire agai.st Xi),
simitarly for bi'
and

u(v) is the fraction of X(Y) artillery fire directed at opposing

infantry force:.

We observe that for T<+» it follows from the battlc¢ dynamics (1) that

? xl(t),yl(t) >0 VYte[0,T]. Thus, the only state variable inequality con-
strainte (SVIC's) that must be considered are X,s¥, 2 0.
Kawara's results and conclusions [22] have been discussed in Section 1

above.

3. Another Model for Optimal Fire-Support Allocation.

In this paper we will study a veriation of Kawara's [22] fire-support
diff-cential game (1) just given. We will see that for this problem the struc-
t~ce of the optimal fire~support strategy for the attacker has a fundamentally
different form than that for (1): the attacker rust sometimes split his fire

between the defender's primarv and supporting units in order to "avoid overkill."

+Sce [10]) (also (8], [9]) for methodology for the predictica of such coefficients
from weapon system performance data.
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Furthermcre, the nature of this split in an optimal strategv depends on the
allocation of the defender's supporting fires.

Let us again consider the attack of heterogeneous X forces against the
static defense of heterogeneous Y forces. Each side is composed of primary
units {or infantry) and fire support units (or artillery). The X infantry
(denoted as xl) launches an attack against the position held by the Y infantry
(denoted as Yl). Again, we will consider only the "approach to contact" phase
of the battle. This pahse is the time from the initiation of the advance of

forces actually

the X, forces towards the Y1 defensive position until the X

1 1
make contact with the enemy infantvv, It is assumed that this time is fixed

and known to both sides.

The Xl forces begin their advance against the Y1 forces from a dis-

tance and move towards the Y1 position using '"cover and concealment.' The

objective of the X, forces during the "approach to contact'" is to close with

1
the enemy position as rapidly as possible. Accordingly, small arms fire by the

X,

their rapid movement. It is not unreasonable, therefore, to assume that the

forces is held at a minimum or firing is done "oa the move" to facilitate

effectiveness of Xl's fire "on the move" is negligible against Yl. We assume,

however, that the defensive Y1 fire causes attrition to the advancing Xl
forces at a rate proportional to the product of the numbers of firers and tar-
gets. Two possible justifications of this are as follows: because of the
movement (and intermittent concealment) of the Xl forces and the distance

involved, the Y. defenders either /1) fire into a constant (but moving) area

1

without precise knowledge of the consequences of their fire or (2) when they do

aim fire at X, targets, the time to acqiire such a target Is inversely propor-

1
tional to the density of Xl forces and much greater than the time to kill an

RGBT




acquired target. Under each of these sets of circumstances the assumed form

of attrition has been hypotehsized to occur [11]}, [37].

During the "approach to contact,” the fire-support units remain stationary.
Each unit has the capability to deliver counterbattery fire against enemy artil-
lery or "area fire" against the enemy's infantry. In other words, we assume that
each side's fire support units fire into the (constant) area containing the
enemy's infantry without feedback as to the destructiveness of this fire. On
the other hand, the effoctiveness of counterbattery fire is not symmetric with
respect to the two combatants. Ve assume that the defender has the capability
(for example, through the use of aerial observers) to sense when an enemy sup-
porting unit has been destroyed so that fire may be immediately shifted to a new
target+ and that fire is uniformly distributed over the survivors..idr The attacker,
however, either (1) does not have the capability to sense destruction of enemy
fire support units accurately (and hence distributes his fire uniformly over the
(constant) area occupied by the defender's fire support units) or (2) if he does
have adequate fire assessment capability, then target acquisition times (which
are inversely proportional to the density of the enemy's fire support units) are
much larger than the time to destroy an acquired target. This leads to a Y2

attrition rate proportional to the product of the numbers of X2 firers and Y2

targets [11], [37].

*Alternatively, we may think that the attacker has massed so much artillery that
X9 targets are always easily acquired by Y2 once an X7 unit has been
destroyed. Moreover, it will be assumed below that the initial X, force

level is sufficiently large to guarantee that it is never driven to zero.

*TThis assumption is not essential for the structure of X9's optimal fire sup-
port strategy. A similar structural result may be obtained when Xj's attrition
is the same form as that for Y,. We have made the above assumption, moreover,
so that the resultant attrition model is most similar to Kawara's [22] but yet
yields significantly different results for the attacker's firc support strategy.

10




It is the objective of each side to attain the most favorable infantry
force ratio possible at the end of the "approach to contact" at which time the
force separation between the opposing infantrles is zero and artillery fires

wust be lifted from the enemy's infantry's pnsition in order not to also kill
friendly forces. Thus, the decision problem facing each side is to determine the
"best" distribution of artillery fire between enemy infantry and artillery over
time in order to maximize the infantry force ratio at the time of contact between
the two infantry forces. This sitvation is shown diigrammatically in Figure 2.
The above assumptions lead to the following differential gam~ with an

attrition structure slightly different than that in Kawara's problem [22].

x, (tg)y
maximize minimize{~»7;—yf,
U v Yyt
with stopping rule: tf ~-T=0,
dx1 y
' . —t = - Vs 2
et R R T R ‘
dx2
a - TAvayy
EZl = ~ub x
dt 1%
dy2

qr - ~(A-wbyy,x,,

with initial conditions

= = o = = o =
xi(t-o) X4 and yi(t 0) vy for 1 =1,2,

and
X2 XgsY Yy 20 (State Variable Inecquality Constraints),
0 sy,v s1 (Strategic Variable Inejuality Constraints),
where all symbols are (essentially) the same as defined above for problem (1).

11
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We observe that for T < 4» it follows from the battle dynamics (1)

that xl(t), yl(t), and yz(t) >0 VYt el[0,T,. Thus the caly SVIC that must be

considered is X, 2 0. However, let us assume that the force level of the attacker’'s

artillery is never reduced to zero. In other words, we consider the special case !

7 in which x; and T are such that xz(T) > 0.

4, Characterization of Optimal Fire-Distribution Strategies for the Supporting

Weapon Systems.

It snould be clear that in (2) above we have a bl,b > 0, Although

11°212°32°°1°°2
the results of A, Friedman [14) concerning existence of value do not apply directly
to our fire-support differential game (2), they do apply to a suitably modified

dx
version. 1If we were to consider a version of this problem with T -(l—v)a2y2+r2

vhere r, > 0, then it may be shcwm (see pp. 210-230 of [14]) that this "modified"

|
e o i i s i mteh e

differential game has value and that a saddle point exists in pure str~tegies (see
PP. 27+=235 of [14j). We will now develop the basic necessary conditions of
optimality for (2).
Yor X19Xy3¥15Y, > 0, the Hamiltonian for (2) is given by [12]
H(t, % XoR Qo us V) = -py (2, %,y 4va, % Y,) = Pya, (1-v)y,
- - - 3
q,ub,¥,%, q,(1-u)b,y,x,, (3)

where we have adopted the following correspondence between state and adjoint

variables:
state variable dual variable
] g Py
Y4 q for i =1,2.
13




The adjoint system of differcatial equations for the dual variables is

Pi_ . m + vk with p (1) = L 4)
R TN § U L B b1 1 P A )
—— 2 - e——— * -y1% ] =
it axz u*b,y,q; + (1-u )bzyzq2 with pz(T) 0,
f . -
dq X
1 3H 1
- - * = - (6)
ar 3y, - 211%1P1 F by %9 with q,(T) .2’
1 (y})
Egz S + (1-v*)a,p, + (1-u*)b_x,q, with (1) = 0. (D
& T Ty, T via0%1h viasp, 4TI09%5% 9y :

The results of Berkovi:z [3] say that H, Ejt), and ﬂft) are continuous
functions of time except possibly at manifolds of discontinuity of both U* and
V% (see Section 4.3 below).

When X19%93Y15Y o > 0, the extremal strategic-variable pair, denoted

as (u*,v*), 1is determined by the max-min principie. Hence, we consider

maximize minimize H(L,X,¥,p.q,u,V), .
HESTES O=vsl
so that
1 for Su(t) > 0,
u¥(t) = (8)
0 for Su(t) <0,

where the U-switching function, Su(t). is given by
§,(1) = b (=a;)y; = b,(-q,)y,, (9)

and
1 for Sv(z) > 0,
vk(L) = (10)

14
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vwhere the V-switcking function, Sv(t), is-given by
Sp(t) = a),P %) = ap0,. (11)
It is readily shown that
f
X
pl(t)xl(t) = constant = pl(T)x:(T) =% (12)
"
f
4 (q) =a, Ly (o) >o (13)
ac ‘9171 vw £ 1 ’
41
and
ds |
v

Too = ~a,(1-u%)S () - ab (14)

2°1%71
We must further investigate the possibility of singular subarcs (see [31]

or Chapter 8 of [12]). Let us fucrst show that it is impossible to have a i

V-singular subarc. In other words, v*(t) must be 0 or 1 almost everywhere

in time. The impossibility of a V-singular subarc is established by showing
ds !

that 7ﬁ¥ >0 for all te [0,T]. It is clear that
(l-u*)Su(t) =0 for all t € [0,T]. (15)
f
X1
Considering (13) and the fact that ql(T)yl(T) =-3 < 0, we see that

y
ql(t)yl(t) < 0 for all t'€ [0,T), whence follows 1 the assertion via (14).
d
It is possible, however, to have a U-singular subarc on which 5%-= 0
(or, equivalently, Su(t) = 0) for a finite interval of time. There are two

cases to be considered: (1) vk =1 and (2) v* = 0.

4.1. U-Singular Subarc on Which V* = 1.

When vk = 1, it is readily computed that

X
(Z1) .. ) .
dt ~lyf]("llblyl a19bg¥o)s (ib)
1

15




and

628u xf
= wk - -yt
prYa { ]x 1(:1]1 1 )J b1 (alzbzyz)(l u )bz}. (1
y1
Considering (9), the requirement that %% = 0 yields the first condition for

a _U-singular subarc with V% =1

B191Yy = Bydgyy: (18)
Considering (16) and (18), the requirement that é%(au) = () on a singular
subarc on which %% 0 for a finite interval of time yields the second condi-
tion for a TU-singular subarc with V¥ =1

211P1¥1 = 31909V (19)

On a subarc on which the first and second conditions for a singular subarc
2
hold we additionally require that a%z'(%%) = 0 so that (17) yields the

singular strategic variable value required to keep the system on the singular

subarc
)
u¥(t) = (20)
b1+b2
. . 3¢ d? ol
Checking the generalized Legendre-Clebsch condition' [23), [24]) 3o dfz(au)} >0,

we find that on a subarc on which (18) and (19) hold we have

a{ g2 an)}

X
= |1 2 2 $20 %
3utde? \u [yf)(x2) faj P2y +a),0,%,] > 0

1

We may write the equation of the U-singular surface (see p. 683 of [31) as

y a ob
1. -3;1;~ for wvx =], (21)
Y2 "y

T'l‘hiq is a necessary condition for optimality. R. lsaacs [?1] gives an

equivalent condition (scce [18]).

10




4.2. U-Siagular Subarc on Which V* = 0.

When v* =0, it is readily computed that

dSu xf .
T - yf (a);b,y,-a;,b,¥,) = b,y,S,(t), (22)
1

and

d2s ds

u _ * *bh_ -(1-u%
Fre il blx2 It L a, 2y2{ u*s (t)+b2q2y2 pzxz[u b1 (1-u )bzl}, (23)

so that the first and second conditions for a U-singular subarc with V& = 0

are, respectively, (18) and

y
1% T 3P Y 2y2[

r-r-nh-am

It should be noted (see {15]) that the above singular surface exists in

X - p, space. It is convenient to write

£
YL 12b2 b1,

{-S (t)} for v =0. (25)
y £ %
2 11 1 anblx1
The singular strategic variable value is given by

b q,y

2 272
u*(t) = [ ][1 - —"——]. (26)

bl+b2 p2x2

The requirement that u* 1 yields that on a U-singular subarc with V% = 0

we must have

by(=a3)y, = bypy%y- : (27)

It is readily checked that the generalized Legendre—-Clebsch conditlon is

satisfied.

4.3. Discontinuity of Adjoint Variables Across Manifold of Discontinuity of
Both U* and _V*.

It is convenient to introduce the hackwards time 1 defined by

T=T-1t,. (28)

]{ -s_(t)}. (24)




From (20) and (26), we see that u*(t) must change, in geaeral, discontin-

vously from b2/(bl+b2) to b /(b +b2)(1 qzyZ/(pcx )) whenever v*(t)
changes from 1 to 0. Let us consider the totality o: trajectories cn which
this happens. The locus of points in the t,x,y - space for such simultancous
switches is then a manifold of discontinuity of both U* znd V%*. Across such
a manifold the adjoint variables need not be continuous (sce [3]).

let L Tv(xﬂx) denote the backwards time at which v#*(1) changes
from §t to 0. For future purposes, it will be convenient to consider a

simultaneous switch with u* changing from the singular control b2/(b1+b2)

to 1. Then the manifold of discontinuity of both U* and V* is given by

Ft,%,0) =t - T+ 1 (x,9) =0,

and (29)

GQQ) = ayybyyy = ayybyyy = 0.

Across the manifold of discontinuity, we have

u?(rt) g_(r D=0 gi %g ’
T,+ _ T, - F 3G
g,(rv)—gL(rv)—pax OB}L’
and
+, aF 3G
H(T)) = H(x)) +p 5o+ 0 37,
or
9T
T, + v
p(rv) p(r)—pazi (30)
+ - oy
(-ql(rv)) = (-ql(rv)) +p 3;; + oa”bl R (31
+ _ arv
(~q2(rv)) = (-qz(TV)) +p 5;; - oal_b2 , (32)
and
H(T:) = W) +op. (33)

18




Considering (9) and (11), it is readily shown that

or ot
+ ? 2 A —V
Su(tv) o{an(bl) y, + alz(bz) yz} + p(blyl %, bz-"z 3y2 ) (34)
and
+ arv arv
SO0 el B TR (35)

- + - +
Recalling that u*(rv) = b2/(b1+b2), u*(rv) =1, v*(rv) =1, and V*(Tv) = 0,

Tt
we may substitute (30) through (32) into (33) to obtain for a,,xy, =—
- N "
v v
2%, " b1¥1%) %, t1

2
231 (b)) 7y %50 %)
arv 3t ot ° (

v
11 ) T %2 o, by¥14 By;)

©
L}

(l-a
Then we may write
S (T+) = ogla., (b.)2y. + a_ . (b,)%y
u'v { 11717 -1 127727 72
R 3Tv arv
a1 (0 y %y by, 3y, b2 3y

3y2
+ arv arv arv)}' (37)
(-231%09) 527 = a2 3~ By BX

1 2
and

- 2 v
311 (by) %y %y %

+ 1 2
SV(TV) ot o1 ar ° (38)

(l—a X,y ~—-v--ay -—!—byx ---‘-J-)
117171 3x1 272 9x 171

5. Synthesis of Lxtyemal Strategic-Variable Pair.

By the synthesis of the extremal strategic variable pair we mean the

explicit determination (using the basic necessary conditions of optimality)

19
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of the time history of the extremal strategic variable pair (u*,v*)~l from
initial to terminal time (see [21] and also [31]-{33]). The basic ideca is
to trace extiremals backwards from the tcrminal manifold (where boundary con-

ditions for the adjoint va-iables arec known) in such a way to guarantee the

satisfaction of the initial conditions. Thus, it is convenient to introduce

the backwards time v defined by (28).

S5.1. Extremal Transitions in Strategic Variables.

It seems appropriate to examine what are the possible transitions (o

changes) in each strategic veriable as we work backwards from the end (i.e.
9S

as 1 increases). It has been shown above that a;x <0 for all 1 € [0,T].

Considering the boundary conditions (4) and (5) for the adjoint variables,
it follows that Sv(1=0) > 0. Thus
l for 051> Tys
vk(t) = (39)
0 for 1 < 1.
v
It will be convenient to refer to that phase of the planning horizon during

which v*(t)

0 as V~Phase I (i.e. 082t <T-~- Tv) and to that during

which v*(t)

1 as V-Phase II.

Extremal transitions in u® for Increasing Tt as shown in Figure 3.
Thus, this figure shows what changes we might expect to observe in u* as
we follow an extremal backwards from the end of thke planning horizon at 1 = 0.

ds X
During V-Phase II whea v* = 1, E;! = [«%](allblyl-alzbzyz) with Su(T=0) =

Y.yl
blxilyi > 0. Whea u* =0, then AL[;;J <0. During V-Phase I when v* =0,

dt
dSu xl 2
prale [;?](allblyl_a12b2y2) + bZYZSv(T)' During both phases, the singular
1

subarc may be exited with eirther u® = Q0 or u* =1. Once u* becomes O,

it remains this vay. The above statements will be further justified below.

— 8 = b Ao i ¢ - o ¢ o St ot o

+It should be kept in mind that, for example, ur(t) = U*(L,)'L,\':).




u*=us uk=1

e u*=0

e eI AT

Note:

B~ S

e

e ey At

Figure 3. Extremal Transitions in u® for Increasing
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5.2. Extremal Synthesis for 1% < t
== - B |
From the abcve we have
£
! 40)
Su(‘t—O) = bl '-t- > 0, (
"
so that by (8) we havc
ui(t) =1 for 0 =1s Ty (41)

where T, is the smallest zero of the equation Su(r=1u) = 0. If the U-
singular subarc is reached in V-Phase TI (see Section 4.1. above), then let
us denote the backwards switching time at which u* changes from 1 to
b2/(bl+b2) as rﬁ. Clearly, it is necessary that tg < L for this singular
subarc to appear in the solution. Thus, in general, there are two cases to

be considered:

(1) T: < Ty

and (2) Tﬁ - T,
In this paper we will consider only the former case, with the latter one follow-

ing along the same general lines of development. We therefore assume that 3110

*
2500 395 bll_gz, xi, xglﬂxi, and yg_ are such that t < T, We will give

u

numerical results for this case below. Moreover, in all our numerical computa-

ticns we have only encountered this case.

5.2.1. Exiremals Near the Terminal Manifold.

ds y
Recalling (16), we see that ?79 >0 (<0) if and only if ;l~> (<)
a,.b 2
;}ZEQ . Considering (40), it is clear that Su(r) >0 for v*¥ =1 when
‘1171 ;
a, b a, b
Y1 %122 . R )
: > e . However, S (1) may change sign when =~z < —"=% _  The U=~
f a,.b u f a
Yy 1171 Y, 1171

1y v suby: . ‘g n ! = %) = ¢ ¢ - Fs
singular subarce occurs when both Su(l xu) 0 and lllblyl 1121)2)'2 at

1= Tﬁ. Thus, T: is the smallest root of

22




f
~b. x, 1%
L [—1-— - —J——-]e 2. (42)
b, x v b xf a y£
172 172 1171
f

) =r%) = = v
1f ¥y is given, then Su(r Tu) 0 and allbly1 alzbzyz may be combined
to yield the value of yg required in order to reach the U- 31ngular subarc

£ £ 0 (a11y1 x5)
{denoted as vy *). Thus, for a y # b_x. wc have y
2 11'1 172 2 b
(l b 1*)

(Other results are given below in Table I.) We denote the corresponding ratio

Y1) *
of yi to yg* as [;%) >
2

When S (t=1 ) = 0 with it follows that T 1is
u u u

31101y < agpboyys

the smallest root of the tvanscendental equation

a yf a yf b xfr
_ 3171} f 1171 "1"2'u _ 43
[b1 i ) A)9Pp¥T, * TE € = 0. (43)
2 %2
o £ £
It may be shown that 5;2 >0 where v = y]/yz. This latter result is useful

in proving the following:

THEOREM 1: Assume that Tv > 13. Then, u*(t) =1 on any eriremal

f
AL
as long as v*(t) =1 for < E -
y
2

PROOF: The proof is by contradiction. Let r = yi/yg.
(a) Assume that we could have a switch in u*(1) (with v*(1) =1)

Y1 . (P1)* .
for — > |—{ . In other words, we can find Tu such that Su(1=ru) =

yf yf
with 2 2
Su(T) >0 for 0 =1 < 1, (44)
Yf yf
%
o 2 )
2. 2
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f f
~ yl yl *
(b) Consider r = £ = |7 *e with €>0 and such that Tt <7 .
Y2 Y
axu aT £
Then it may be shown that 3 > 0. In particular 5:q voyvk® > 0. This
e
f
72

implies, however, that T > 13 for r=r.

* =
(c) Observe that {:* - 1 for 0 stsT < T, SO that y1/y7 =

1 u
f
£, f ebl"zT e
yl y2 e ce,
y a,. b -~
—;'(T=Tu) > ;légg for r=r, £45)
Y2 11°1
~ dSu
= * . ——t
since then Tu(r r) > T*. It has been shozg above that T >0 for yl/y2 >
. _u
a12b2/(allb1)' Thus, (45) implies that it (r-ru) > 0, and hence

0= SU(T=Tu) > SU(T) for t € (Tu—G,Tu). (46)

This last statement (46) 1is a contradiction to (44), and the theorem is

proved. Q.E.D.

Other results are obtained in a similar fashion.

5.2.2. Field Construction.

For a given set of terminal values xf £yt and yg an extremal

l) xz) yls
may be traced backwards from the terminal manifold by a backwards integration
of tlhic state and adjoint equations combined with (8) and (10) (also (20) or

(26)). By varying these terminal values the entire field of extremals (see

p. 128 of [12]) may be obtained.

fhe various types of extremals that may occur in the ficld of extremals
are shown in Figure 4., This figure is representative of all our numerical
results for Tﬁ < Tv (see Section 9.2.3 below). Pertinent information con-

cerning each type of extremal is given in Table I.
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Table I.

pal

*
Problem with ¥ < 7
u v

£
* =
1. P_.: for 0 st s8¢ with — = |-
SO ve(z) = 1 u f f
Yo Y2
*
T, is the smallest positive root of
-b.x.T
S T, T+ S e ! 2u 0,
b xf b xf £
1%2 12 1101
with the following bounds established:
£ £, _1 | .
for any1 > blxz. ) ; < T < : xf
1171 1%2
£ _ £, * 1
for a9 = blxz. T -
172
£ £l %
for a9 < blxz' - F <t < - ;
1%2 1”1
£ £
£ g gx Py (@1)7bixy)
for a, y, #b.x,: y, ==
1171 172 2 b2 a. . (1-b xfr*)
12 172y
a,.b £
for a yf = b xf' yf* 3 0 o § 1’1
1171 172 2 alzb2
Also
f ©a a f
_ *) 82 1173
S (1) a.b, |— +
\{ 2°1} £ azbl (b xf)g
Y1 1%2
. {
1’ 1
+ ——F 1}t - ""‘*{j
blxz (blx2)
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Table 1. (cont.) -1

1. P;g: (concluded)
Let Sv(1=t:). Also, on P;é we have
a yf b xfr
- f S $ LA R b
x, (1) = % exp{alzyzr + i (e },
b,x
172
f
xz(t) = xz ?
b,x.t
_ f 172
yl(T) - yl e ’
f
yz(r) - )’2 P
and
f f
b, x.T
1 £ N 1%
pl(r) = ~F exp {—[alzyzr + bi;f— (e 1]}
N 1%2
f f
X a,.¥.3 a,.y b,x,T
p(T) = b -.1'. { ].._E_l..t.’_._l.l‘_l_ (elz
2 1l f b xf b xf)2
1 1%2 1*2

f f f

xf a a -b xfr
q, (1) = [*l}{~ NS YR NS -LJ e 12y,
1 b

£ X b, x
Y1 1%2 12 N1
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Table 1. (cont.) ~ 2

WA (1) = b,/ (b +b,)

*
2. Pg: { for v st s r:
vik(t) = 1 u
® 11
where T, is determined in 1. On PSI we have
Su(t) = 0,
and 3110191 = 319P0Ys-

* *
‘l’v is the smallest positive root of SV(T=‘tV) = 0, where

£
uk we(*1) 4 _ %11
sv(r) Sv * aZblyl [ f] {(exf)z
yl 2
f a a
* *
e ) + ] e - emtegae |
9 (Tt} *oex (6x.)?
Xl 2

. *
with 0 = b1b2/(bl+b2). An upper bound on T, is given by

X
Ty = 3,/ (ak)).

11
Also, on PSl we have

u* f £, __ %
uk 2% | [ Oty
xl(t) * X evp{ -l ’
6x
2
£
X (1) = x, ,
£ *
ur 0% (-t )
y,(x) =y, e ,

£ *
« = £ eexz(r-ru)
y2 T }'2 »

and

ut ally?*+a]2y; 0“2("‘:) ! w3 xf
Pl('t) =P, exp {- — il -1{f with P, = -—:;;[—f] .
9)(2 J Xl yl .
f f f
6x,(1-1 )
* *(*14 %1 «M1) %1 x n 2Ty
Py (%) = P; - blyllj [_f]{"ﬁ + q\ll {-—f] +-Sg =) - 'O—T; e }.
Y, ©x,) Xy 6x, (0x,)
£, _* £ RPN
u -0x2(1—1u) il_a.l_ll 9x2(1‘ Tu)}
q (1) =q, e i e R
yl Oxz

f * f f +
Oyl (1= . -6 .
ok Oxz(T 1") (%1 JL2 { xz(T ”;}
Q,(1) = q, e -5 TR e :
2 2 Oxf
i 7%
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Table I. (cont.) - 3

11 u(t) =1 y: yi *
3. PM: for 0=ts ‘tv vith =3 > 5
vi(r) =} yz Y,

tv is the smallest positive root of Sv(‘l’l‘tv) = 0, where Sv(t)

is given in 1. An upper bound on T, is given by

-
T =

It has been shown that s“(t) >0 for 0K =% tv. The solutions to the

state and adjoint equations are the same as those for P;; given above.

uk(t) = 1 1

4. PL: { for T RTET
v u

v(1) = 0

We have that Sv(‘t) <0 for Tt > tv and that

t

a8, { x) £

dr (O = b5, + [—f] (a1;byy; (1)=2;,b,¥5)
1

1
Also, on PAI we have

v
i a1 %%, with xl(‘t 'rv) = Xy
x,(T) = x2 +a yf(t-t )
2 2 272 v
a,b yf
-y’ Vir- 2172 1 )2
o =y exp{b x, (1-7 ) + —S5—= (1-1)) },

f

yz(r) =Yy
and
21..-3 y.p, with p (™=t ) = p’
dt 117171 1t v
dpz v
TR = -blqul with PZ(T'T‘}) - sz
dql xi v
Ty TrTb%y  vith q () =g,
"

dqz

v
To " 8Py with g (T=T)) = qy.

He have not been able to develop solutions in terms of "elementary" functions

to the equations for Xps Pps Py 9 and q,.
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Table I. (cont.) - &

11

st

ot ut(t) = 1
{ for

STE7
vi(r) = 1 v

Tv is the smallest positive root of Sv(r=1v) = 0, where

£ £
£ X a
S (1) = SSLIL 4 5y SLILI L {___1_1._ + E‘sm )
v v 2711 L E (® xf)z 1 xf
Yy % 1
f I1
1] 1 3 byx(rtgy)
+ (t-1,,) - —=F—e .
b xt SL (b xf)z
172 1*2

Again, an upper bound on Tv is given by alzl(azbl). It has been shown

II 11
that Su(r) >0 for Tgp < 1 £ T, Also, on PA we have

2

SLII £ I,
any byx, (T-151) {jl
o alb,

by%,

xl(r) = xiLII exp{a SLIL

11
1292 g ¥

f
xz(r) = X2,

11

f
b, x,(tT=-1..),
S
yl(T) _ ylLII o 172 SL

_  SLIL
Yo (1) =y,
and
a Sy L T,
o oSLIT_ f  SLII,___II, _“117) 172 sl }
Py(7) = py exp{ a)y¥,  (TTg) £ [é {]

bixy

£
1 N

f £
SLIT sLILf® a y a
P (1) = p - by 11 {__ 1 qSLII S0 Y I PR & 3
2 2 171 £ f\o 1 3
Yy (byxy)

£

X

SLII 1 1

with Py s—u—f[—] -
X

b3 1I f £ 11
=byx,(t-141) X a “b. x.(T~1..)
q (1) = quII e V20 SLT {_l] 2 {l_e 1 %2751 }'

£
_ SLII 1, 11
Q) = g, - al2[yf](r-1 ).
1
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Table 1. {cont.) ~ 5
1 uk(t) = 1 1
6. PAZ: { for T S 187
vA(T) = 0 M u
Results are similar to those for P:l above in 4.
ur(t) = 1
7. P:3: { for T: 2T s tl
k(1) = 0 Y
Results are similar to those for Pil above in 4.
*
uk(t) = b /(b +b ) (1-q.y,/(p,x,)) = u -
8. P:zz{ 22712 222 § for t: E o 4 Ti

vk(t) = 0
As usual, we have thﬁt Sv(r) <0 for 1> T, In order for a

*
U-singular subarc to be possible for t 2 tv the following condition must

hold at 1 = t*-
v

Also, on PI we

S2

dx1

drt
dx2

dt
dy1

dt
dy2

dr
and
dp1

dr
dpz

dt

dq1
dt

K * *e *
blpz(tv )xz(tv) 2 bz(-qz(rv Ny, ().

have*

Tait N

RettiLs]

= by

n -3

1%29;

£

SR
11 £ Y
N

1-u)b
-a,py - (I-ugb,x,q,

in Section 5.2.4,

below.
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with

with

with

with

with

with

with

with

*
x1(1=tv)

*
x2(1=rv)

*
Yl(r-Tv)

*
y2(1=rv)
*
P1(1=Tv)
*
PZ(T"TV)
*
ql(r rv)

*
q2(1=1v)

*A further discussion of the continuity of the adjoint variables 1s to be found
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Table I. (cont.) - 6

f
(U =1 S AL
9. PBl: { for 0st=x T with <5 ° F%ﬂ
vk(t) = 1 Y, ¥,
l Tu is the smallest positive root of
a yf a..y, b xft
11°1 f 1171 "172'u _
2 2
9T £ f
It should be noted that 5;9 >0, where r = yl/yz. It may be shown that for
f f
SN
0 << —f']
Yo Yo

o

b

<T <1
f u u’

3292

o

*
where the determination of Tu is given in 1. We also have that

f f
Tu(rl) < Tu(rz) for r < r, (x1 and Xy held constant). The solutions

' to the state and adjoint equations are the same as theose for Péé given above.

Let Sv(t=ru) = S:, pl(1=ru) = p;, etc.
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Table I. (cont.) - 7
uk(t) = 0

10. ;g { for v St s <
vi(g) = 1 u v

y
It follows that for all T > Tu we have Su(T) <0 and ;l (7) <

2
a,, 2/(a11 1) T, 1is the smallest positive root of Sv(Tatv) = 0, where

Sv(f) is given by

£
- aU 1 12
S,() =5, + azbzyz{ f){ f
y,” (b

2
1 2*2)
f a
+ %1 (r—r ) - 12 explb xf(t-r )]}.
O T e 22
X 2 2%2
Also, on P§§ ve have
f f '
y b x.(t-T )
(T) = x exp{allyl(r -T ) + 12f2 [e 272 u -11},
boXy

f
x2 (T) = xz!
¥ (1) =y},

- £,
Y (T =y, exp{bzxz(r ru)},

and a yf b xf(r-t ) xf
- WU _ u, 1272 272 u’_as w_ 1171
pl(T) P exp{ allyl(r Tu) : xf [e 1]} with Py u[ f) ’
2%2 1N
- f
£ xf 819 u yi 3 319 byxprmr)
P, (t) = p, - b,y {"““‘“ + 19, F *“-“‘ (tt) - —f e }
2 O WS U P e I B b xEy2
1 272 1 272+ 272
xfw
u 1
ql(T) ql = all[ f (T~TU),
yl'
f f f
o = [ 222 I-_"_*_lg RRTAT RS A
90 ) N MU 1 ‘
) 2% % *1
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Tabie I. {(cont.) - 8
uk*(t) = 0
11. P:;‘ { for tg} StTET
vi(t) =1 H v
T, is the smallest positive root of Sv(t=rv) = 0, where
f a f
S (T) - S“"II ab.y SLII 1 { 12 + qSLII 1
42°2%2 (bxE)? 2 | f
y1 2%2 1
) 312 z 2(T = )
b (T SL ® 5)2 '
2 2 2%2

Again, an upper bound on T, is given by alz/(azbl). It may be shown that

11 I
Su(r) <0 forall 1t > Tope Also, on PB3 we have
a, oI of (em 111)
SLII SLII, II 1272 by%y
x (1) =% {aj vy (mtgp) +\_b N [e -1},
2%2
£
xz(t) = X,
SLII
yl(r) Yy s
SLII £, II
yz(r) Y, exp{b2x2(1~rSL)},
and a, ySLIT of (eoeldy £
SLII SLII, II 12¥2 byx, (7-1gp, st _ 1 (M1
P (0 = oy expleayyy T (rg) - e ) vieh T = g f)‘
2*2 1 N1
f a £ a a b xf(r—TII)
SLII sLII (1 12 stir (Y1) , %12 I1 12 272 " 517
P, (T) = p - b,y ——==+ |q —=| + —F|(t=15,) - ——F— e (*
2 2 292 f (b xi)2 2 ) 7y sL T D2
YT 8% 1 2%2 09%2
£
ST _ *1
Y1
f 4 I1
2 SLII 1) 7Py 2(T Ts1)
qZ(T) = '__ f —f‘l e .
2*2 Xy
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Table I. (cont.) -9

12, ¢

*(1) =0
{u

for T* £7T
B4 V(1) = 0 v

*
It may be shown that Su(f) <0 and SV(T) <0 forall Tt > Tv. Also,
1
on PM we have

v¥ vk %
xl(T) = xl exP{allyl (T-‘tv)}ﬁ

2a b
//>v* 2 _ 2 vk afetX 2 , vk vk
( (x2 ) b2 Y, coth(-A(T Tv)+B) for 3 (x2 ) 3l 8,55 »
(1) = v"‘/{1 - 33, v*(1’-—1'*)} for EZ (xv*)2 =2 vE
*2 q %2 2 X Uy 2 ¥2 22
\ 32 v vk, 2 * l'2 vk, o v¥
-%-2— Yy - (x2 ) tan(C(‘l’-Tv)+D) for -~ (x2 ) < a,y, »

= v*’
¥,(0) =y,
*

b (xv )2 b
2\%2 vk 2 * 2 vk oo vk
( ( 2, 72 )/ sinh®(-A(T-T )4B)  fox 5 (%) )% > ayyy
(1) = ¢ i - El V-t 2 for E‘Z 02 = ay
Y2 Y2 2 %2 v or % 272
\ , V* b2 vk 2 * b2 vk, o vk
(y2 - 5;; (x2 ) )/ cos (C(T—Tv)+D) for =5 (%, )< < 8,¥y

b // 2a
e 2/ V2 2 Vv
wvhere A 3 (x2 ) bz Yy
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Table I.

12, P (concluded)

B4°

and

vk vk * vk 1 f_
pl(t) =p; exp{ a9, (t TV)} with p, = [

(cont.) - 10

(-]

L]
(2]
[}
[as
b=ad

1
[

dp2
T = Th¥aa,
£
* 1 *
Y1
dq2
T T T3Py T byxyay

* *
with q2(1=1v) = q; .

We have not been able to develop solutions in terms of "elementary" functions

to the equations for Py and qy-
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Table I. (concluded) -~ 11

uk(t) = 0
1 and PI : { for =
vk(t) = 0

Results are similar to those for

uk(t) =0

I { 4 1

: for T =«

BS v#(1) = 0 SL

Results are similar to those for
uk(t) = 1

14: { for TgL £T= Ti
v:‘c(r) = 0

Results are similar to those for
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5.2.3. Numerical Examples.

A computer program to calculate numerical values for information given
in Table I was written in FORTRAN for the IBM 360 computer.* A plot of the field
of extremals (see Figures 5, 6, and 7 below) is generated by this program. The
closed-form analytic results presented in Table I are used whenever possible.
Approximate numnerical solutions to transcendental equations (for the determination
of, for example, t:, Ty etc.) are developed by the well-known Newton-Raphson
method. In those cases for which closed-form solutions are not available to the
state and adjoint equations, a stondard fourth order Runge-Kutta numerical inte-
gration method is used. A time step, Ar, was used in these numerical integra-
tions which yielded agreement to the fifth place to the right of the decimal
place in test cases in which the approximate numerical solution could be compared
with the exact solution.

Parameter sets for the numerical exawples given in this paper are shown
in Table II. For our problem (2) we may considei time to be an additional state
variable so that the state space is five dimensional, i.e. the state variables
are t, X5 X905 Yo and Yoo Thus, unfortunately, we cannot graphically depict
the field of extremal trajectories but must be satisfied with viewing "cross-

section" plots of it.

Table II. DParameter Sets Used to Generate Numerical
Results Shown in Figures 5, 6, and 7.

Parameter a a b b f xf f
set 11 12 %2 °1 P2 X1 X 7

1 0.003 0.006 0.01 0.004 0.005 4.0 8.0 8.964

2 0.003 0.006 0.01 0.004 0.005 4.0 8.0 11.597

TThe author would like to thank Captain Jeffrey L. Ellis (U. S. Army) for doing
this work. Subsequent computational contributions were made by Captain Robert
J. Bill, IIT (U. S. Army).
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The most illuminating plot for gaining insight into the structure of the
optimal fire support strategies for (2) is that of extremal trajectories in
terms of ylly2 versus backwards time, <t. This is showi: for parameter set
1 in Pigure 5. The corresponding strategic variable values for X and Y
(i.e. u* and v*) along each extremal are also given. Other plots have
bzen considered, but they provide little, if any, additional insight.

The most significant features of the field of extremals shown in Figure
S are the two U-singuia. "surfaces": there is one in XY, ~ P9 space in
V-phase I and one in y-space in V-phase II. In each phase, X wuses the
stracegy U* = 1 above the singular "surface" and the strategy u* = 0 below it,
Simila» to our discussion in [32], the singular surfaces are present i:. the
field of optimal trajectories so that the X artillery avoids "overkilling"

either Yl or YZ. This insight is obvious when one, for example, considers
dy
de_

1w, the riate of destruction of Y1 per unit of X artillery decreases over
time as the Y1 force level decreases (see [31] and [32]).

Results for parameter set 2 are shown in Figure 6. There is a void
(see p. 169 and also p. 187 of [21]) in the field of extremals. This is because
in backwards time at the end T: of the U-singular subarc in V-phase II, we
would have us(r:+) (as given in Figure 3) equal to 1.054 if the adjoint

* 3 3
variables were continuous at T, The following theorem further explains this

situation.
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THEOREM 2: There can be no U-singular subarc beginning in
+ . -
backwards time at T, with allblyl alzbzy2 for

blpz(‘l‘v)x2 + b2q2(Tv)y2 < 0.

When a U-singular subarc begins at T: with

3;1b1Y; = 315P)Yys

adjoint variables at T = Tv (i.e. 0 =0 in (37)).

there is no discontinuity in the

PROOF: Immediate by (27) and (37). Q.E.D

Additionally, Theorem 3 gives the extremal transitions in X's strategy possible
*
from the U-singular surface in V-phase II as we work backwards from Tv. Thus,

* * .
since b1p2(1:v)x2 < b2(-q2(1v))y2 for parameter set 2, a void would exist in

*

the fieldé of extremals if the adjoint variables were continuous at T,

THEOREM 3: Assume that there is no discontinuity in the adjoint
variables at T = Tv with aubly1 = alzbzyz. Then
I. if blpz(rv)x2 < bz(-qz(rv))yz, then we can only
have u*(t) =0 for T € (tv,1v+6) where 6 > 0,
II. if blpz('rv)x2 2 bz("qZ(Tv))YZ’ then we can have
(a) 0,
u*(t) = l (b) (l’qzyzl(pzxz)) . bz/“’f'bz)'
(c) 1,

for 1t € (t ,T +6) where & > 0.
v'v

1]
-
-

PROOF: (a) When we are on the singular surface in V-phase II at T;

then by (22) and (23) and the continuity of the dual variables we have

and
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b q,y
2 2Y2)

- X -] + +
Su(‘t--‘tv) = azbz(bl-l-bz)pzxzyz{U*(Tv)-[ [+,

Py*s
ds
u

[ J
where S denotes —— .
u dt

(b) Considering a Taylor series expansion about T = t:, we have by

*
the above for Tt 2 r: =T +

v
*
(T=1 )% 00 _
5,(1) = — — 5,1, (48)

- *
where 1 € (TV,T).

*
(c) When u*(t) =0 for T € (TV,T:+5), then

00 k4 2 99%2
Su(T—Tv ) = —az(bz) pzxzyz[l - P,%, <0,

* *
so that 3 61 > 0 such that Su(T) <0 forall T € (TV,TV+61). Thus, we
can always have u* = 0 as we work backwaids in V-phase I from the U-singular

subarc in V-phase II.

X *
(d) Now let blpzxrv)x2 2 b2(~q2('rv))y2° By (26), the y-singular
control in V-phase I u = (1—q2y2/(p2x2)) °b2/(bl+b2) = 1. Thus, the
) °o *
U-singular subarc is possible. When u*(1v+) =1, then Su(1=rv+) 20 by
(47). When inequality holds, it follows that 3 61 > 0 such that Su(r) >0

x % *
A 1 X =
for all t ¢ (TV,TV+61). Clearly, we cannot have u 1 if blpz(rv)x2 <

bz(-qz(T:))yz- Q.E.D.

———

The same analysis as used in the proof of Theorem 3 applies on a
U-singular subarc in V-phase I when v* = 0. As long as (27) holds, one

has three options similar to those of part II of Theorem 3.
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5.2.4. Filling in a Void.

We have emphasized that H, p(t), and gﬂt) are continuous functions of

time except possibly at manifolds of discontinuity of both U* and V* (see Section

4.3 above). From Theorem 3 it follows that a void must exist in the field of

extremals when these functions are continuous and blpz('t:)x2 < bz(-qz(T:))yz-
At r:, moreover, v* changes (as we progress backwards in time) from 1 to 0
and u* from b2/(bl+b?) to a differeat value. Thus, we have a manifcld of
discontinuity of both U* and V*. Moreover, considering results given above,
it is readily shown that u*(t) remains for increasing Tt (i.e. backwards
time) equal to zero once it changes to zero. Then from Theorems 2 and 3 it

*— *—
follows that for blpz(rv )x2 < bz(—qz(Tv ))y2 the dual variables must be

* *
discontinuous to fill) in the void, and we must have u*(t) =1 for Tv < T« TE .
Furthermore, considering Figure 6 and considerations "in the large," the mani-

3
fold of discontinuity must lie on the V-transition surface.
Thus, we have established that for allbly1 = alzbzy2 we have
- +
uk(t ) =b,/(b,+b,), uk(t ) = 1,
A4 Y3 172 v
v and N (49)
* = *( =
vi(t) =1 vk(t ) = 0.
BTV arv
It remains to determine the function < (x,x/ of (29) so that —— and ———
. v~ ai %z

may be computed, and the jumps in H, p, and q subsequently determined (seec
(30) through (33)). It shouls be clear that it is impossible to explicitly
determine Tv(iﬂx)‘ However, by computation of five points on the V-transition
surface, the desired partial derivatives may he estimated by using linear
approximations to the appropriate directional derivatives and solving a system
of four linear equations in four unknowns. For parameter set 2 (as the reference

case), this yielded the following estimates

Lb




arv arv
—Y = 0.0000, —¥ = -0.295,
%) 9%,
(50)
ot 9T
5—! = -0.0167, 5—! = -0.0331.
41 Y2

It is, therefore, convenient to re-write the jump conditions across

the manifold of discontinuity of both U* and V%,

ot

+ - + _ -\ _ v
p,(t,) = p (7)), Py (T,) = py(T) - p 5;; )
+ 8Tv
s (t) - p =Y - 51
() =9 ) -0 ¥y, %)% G
ot
H - Ty - Y
q,(T,) = 9p(ry) - ¢ 3, 03y 90,

where p and o arc related by (3¢). In this case the jumps (37) and (38)

in the switching functions simplify to

T T
v

V2 A Vv
a3, by} y1x2[blyl 5. ~ P2¥2 3y }
1 2%, (52)

+ oL ‘ 2 2
SalTy) = °1311(b1) yp tagyby))y, +

arv arv
[l“azyz EX b191%2 5}1}

and

T
2 v oV
. 21,3, (b )%y, %, o, °
- . 53
Sv(Tv) arv Brv (53)
[1’azy2 x, 11 5}1)

*
Since V*(T:+) = 0, we must have Sv(rv+) < 0 so that (50) and (53)

yield that o 2 0. It should be clear that o =0 if and only if H, p, and
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* k4
q are continuous at Tv. For o > 0, the condition that u*(‘lv ) =1 yields

that we must have

*.
S (T +)
——>0, (54)

*+

where Su('tv ) is given by (52). Although it cannot in general be guaranteed
that (54) will always hold when a void in the rield of extremals such as that
shown in Figure 6 exists, it should be clear that it must if the problem (2)

is to have a solution. The author conjectures that this is true. It is readily

shown that when (54) holds, we have

*4 ° k4 *4
su(rv ) > 0, 6,(0, ) <0, and s (r,) <0. (55)

The appropriate value for ¢ 1is determined by "considerations in the
large:" the structure of the eniire fieid of extremals determines the value of

*
this parameter. In Figure 7, we let Ti denote the backwards time at which
I* ”

the U-singular subarc is entered in V-Phase I. Corresponding to T, is o

*
which yields the first and second conditions (18) and (25) (with uSSLl) for

% * *
a U-singular subarc with V =0 at ri >T.. For 0<og<o , one uses

*
v
* x4 1 I *
u(t) =1 for T, <T< Tu and then u*(t) =0 for =t> T, For >0 , the
*
U-switching function Su(r) never changes sign so that u (t) =1 for all
*
T>‘Tv. Thus, by manipulation of o, one may f£ill in the void in the field of

extremals in V-Phase I. The resulting field of extremals is shown in Figure 7.

5.2.5. The Case of Negligible Y. Small Arms Effectiveness.

I

It seems appropriate to consider what happens to the solution to the
problem at hand as the (relative) effectiveness of Yl (small arms) fire becomes

negligible, i.e. as all + 0. Let us consider (either) Figure 5 (or Figure 7).

. _ . . ", RS T _ . _
The U-singular "surface” in V-Phase I1 has equation yl/y? aleZ/(allbl)'
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Thus, as a,, + 0 with the other parameters teing held constant, this singular

11
"surface" appears higher and higher on the yl/y- axis in Figure 5. In tie
limit, the singular surface does not appear in the finite part of the plane.
Thus, we have shown that an optimal strategy in which a side divides the fire

of its supporting weapon system between the enemy's primary (infantry) and

supporting systems can only occur whean the enemy's infantry has some fire effec-

tiveness (in the sense of a non-zero Lanchester attrition-rate coefficient)

against his infantry.

6. Discussion.

In this paper we have examined .ue dependence of optimal (ime-sequential
fire-support strategies on the form of the combat attrition model by considering
a differential game (see equations (2)) with slightly different combat dynamics
than those in the fire-support differential game considered by Kawara [22] (see
equations (1)). For this fire~support differential game (2) we developed first
order necessary conditions of optimality and constructed "cross-section' pictures
of the field of extremals. By comparing and contrasting the structure of optimal
fire-support strategies for our problem (2) with that for Kawara's fire-support
differential game (1), one begins to understand the n.ture of the dependence of
optimal strategies on the combat dynamics by also comparing and contrasting the
combat attrition equations fo- “hese two differential games.

Our fire-support diffefential game (2) was similar to Kawara's problem (1)
(see [22]) enxcept that we let the attacker's (i.e. X's) a.tillery produce
"linear-law" attrition+ against both the defender's artillery and also his infantry
and let the defender's infantry produce "linear-law' attrition against the

attacker's infantry. As contrasted with the optimal time-sequen.ial fire-support

"For convenience we use the term "linear-law" attrition to dinote ap attrition
process in which a target-type undergoes attrition at a rate proportional to the
product of the numbers of fivers and tarpets (sce [31]), [32]).
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strategies for Kawara's problem (1) of always concentrating :11 artillery fire
on first enemy artillery and then later encmy infantry (the timing of the switch
being force-level independent), for our problem (2) the optiwal strategy for one
combatant (the attacker, X) depends directly on the enemy's force levels and

is no longer to always concentrate all fire on either the enemy's primary or
secondary weapon system. The latter result, moreover, was shown to depend on
the defender's infantry having some fire effectiveness (in the sense of a non-
zero Lanchester attrition-rate coefficient) against the attacker's infantry.

The solution to (2) is characterized by the presence of singular surfaces
(in Issacs' terminology (:ee [21]), universal surfaces (see also [18])), a differ-
ent one for each V-phase of battle. When the battle state reaches one of these
surfaces, X follows an optimal strategy f dividing his artillery fire betwecen
enemy infantry and artillery in order to avoid "overkill." Ancther characteristic
of the optimal fire-support strategies (not present for Kawara's [22] problem (1,)
is that X's optimal strategy may sometimes depend on Y's distribution of
supporting fires. This behavior occurs on the singular surfaces. In facr, X
sometimes must react instantaneously to changes in Y's fire distribution.

The development of even a partial solution to (2) has involved a solution
phenomenon not previously reported for Lanchester-type differential games: the
adjoint (or dual) variables+ are discontinuous across a manifold of discentinuity
of both U* and V*. This manifold of discontinuity exists for a certain range
of parameter values in the solution to the problem at hand (2). Furthermore,
there is a military interpretation to this manifold of discontinuity: if Y

2

concentrates fire on X2 and X2 on Yl’ then when Y2 changes to concentrating

all fire on xl’ X must re-evaluate the worth of a Y2 unit because it now has

The reader should recall that these represent the marpinal values of force tvpes,

i.e. pz(t) = s;éy-~ where V = V(L,zfx) denotes the value of the differential

(t)
game (see [l4], fZl]).




a direct influence on the payoff. Such a discontinuity in tae adjoint variables
is unique to differential games ’‘see (3], [4]) (i.e. it cannot occur for a one-
sided optimal control problem).

It should also be pointed out that the presence of singular (i.e. universal)
surfaces in the solution to (2) is apparently independent of the torm of the
eriterion functional (here terminal payoff) and depends only on the combat dynamics.
For purposes of comparison we considered the same payoff as considered by Kawara
[22]. We also showed that the singular (i.e. universal) surfaces can only be

present in the solution when the defender's infantry Y. has a nonzero casualty

1
producing capability against Xl.

The problem (2) considered in this paper has certain similarities to the
“"War of Attrition and Attack: Second Version" studied by R. Isaacs (see pp. 330-
335 of [21]). We have, however, developed a much more complete solution to our
problem than that given in [21}] for Mengel's problem. Although this problem (2)
possesses some similarities iov the Lanchester-type optimal control problem
studied by us in [31], its sclution has turned out to be much more complex. Our
developments in this paper, however, have been significantly helped by intuiticon
gained in the study of the simpler, one-sided problem (see [32] for a further
discussion).

As a result of our indestigation here, we hope that a better understanding
of optimal fire-support strategies has been developed. As is always the case,
however, the insights gained into the optimization of combat dynamics from our
study of the differential game (2) are no more valid than the combat model itself.
Our work here shows that .he functional forms of the various target-type casualty
rates produced by the artillery essentially determines the most significant aspects
of the structure of the optimal fire-support strategies. Thus, our study of this

optimization problem shows the impertunce of determining the appropriate (Lanchest:

type) model of combat dynamics.
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